The Effects of Cohesive Strength and Toughness on Mixed-Mode Delamination of Beam-Like Geometries

نویسندگان

  • J. P. Parmigiani
  • M. D. Thouless
چکیده

Cohesive-zone models have been used to study the effects of strength and toughness on the delamination of beam-like geometries. The conditions under which linear-elastic interfacial mechanics provide a good frame-work for predicting failure of such systems have been studied. It has been determined that the phase angle derived from LEFM calculations provides an excellent description of the partitioning between the mode-I and mode-II energy-release rates over a wide range of fracture-length scales. In particular, the nominal phase angle can be a useful parameter, even when the fracture-length scale is so large that the interface stresses do not exhibit the expected inverse-squareroot dependence. The analysis has also shown that nominal phase angles with a magnitude greater than 90o can have physical significance, provided the interface layer is thick enough to accommodate compression without crack-surface contact. Finally, the role of modulus mismatch has been studied. A length scale introduced by the cohesive strength allows a crack-tip phase angle to be established, when LEFM predicts oscillating stress fields at the crack tip. This crack-tip phase angle is shifted from the nominal phase angle based on a characteristic geometrical length by an amount that depends on the cohesive parameters of the interface and the modulus mismatch. It has been shown that, as a result of this shift, both modulus mismatch parameters can influence the strength of an interface. ∗Current address: Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-mode Cohesive-zone Models for Delamination and Deflection in Composites

Cohesive-zone models for interfaces incorporate both strength and energy parameters. Therefore, they provide a natural bridge between strength-based models and energy-based models for fracture, allowing delamination to be described by a single framework that covers a range of applications for which the strength or energy criteria alone might not be sufficient. In this paper, the relationships b...

متن کامل

Investigation of Mode I Delamination Resistance in Inter-ply and Intra-ply Hybrid Composites Reinforced with Basalt/Nylon Woven Fabrics

Due to their sensitivity to impact-induced delamination, woven fabric reinforced polymer composites have limited practical applications. Hybridization of polymer composites has been proposed as a solution to this problem. In this study, the effects of fiber reinforcement type, hybridization method, plies stacking sequence and loading rate on mode I delamination behavior of pure basalt, pure nyl...

متن کامل

Numerical Determination of Delamination Onset in Laminated Symmetric DCB Specimen

In this study, a novel numerical method is proposed for determination of mode-I interlaminar fracture toughness, GIc, in multi-directional (MD) double cantilever beam (DCB) specimens using fracture properties of unidirectional DCB specimens. Two factors, β and Dc are defined to minimize the undesirable effects on strain energy release rate. β describes the difference between maximum and average...

متن کامل

Mixed-mode I/II Interlaminar Fracture of CF/PEI Composite Material

Failures in composite materials occur mainly due to interlaminar fracture, also called delamination, between laminates. This indicates that characterizing interlaminar fracture toughness is the most effective factor in the fracture of composite materials. This study reports investigation on mixed-mode interlaminar fracture behaviour in woven carbon fibre/polyetherimide (CF/PEI) thermoplastic co...

متن کامل

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007